On pointwise dimensions and spectra of measures
ثبت نشده
چکیده
We give a new definition of the lower pointwise dimension associated with a Borel probability measure with respect to a general CarathéodoryPesin structure. Then we show that the spectrum of the measure coincides with the essential supremum of the lower pointwise dimension. We provide an example coming from dynamical systems. Résumé Nous donnons une nouvelle définition de la dimension locale inférieure associée à une mesure de probabilité borélienne par rapport à une structure de Carathéodory-Pesin générale. Nous prouvons ensuite que le spectre de la mesure est égal au supremum essentiel de la dimension locale inférieure. Un exemple tiré des systèmes dynamiques illustre cette approche.
منابع مشابه
A Note on Pointwise Dimensions
This short note describes a connection between algorithmic dimensions of individual points and classical pointwise dimensions of measures.
متن کاملDimensional Characteristics of Invariant Measures for Circle Diffeomorphisms
We consider pointwise, box, and Hausdorff dimensions of invariant measures for circle diffeomorphisms. We discuss the cases of rational, Diophantine, and Liouville rotation numbers. Our main result is that for any Liouville number τ there exists a C∞ circle diffeomorphism with rotation number τ such that the pointwise and box dimensions of its unique invariant measure do not exist. Moreover, th...
متن کاملVariational Principles and Mixed Multifractal Spectra
We establish a “conditional” variational principle, which unifies and extends many results in the multifractal analysis of dynamical systems. Namely, instead of considering several quantities of local nature and studying separately their multifractal spectra we develop a unified approach which allows us to obtain all spectra from a new multifractal spectrum. Using the variational principle we a...
متن کاملPOINTWISE PSEUDO-METRIC ON THE L-REAL LINE
In this paper, a pointwise pseudo-metric function on the L-realline is constructed. It is proved that the topology induced by this pointwisepseudo-metric is the usual topology.
متن کاملCOSPECTRALITY MEASURES OF GRAPHS WITH AT MOST SIX VERTICES
Cospectrality of two graphs measures the differences between the ordered spectrum of these graphs in various ways. Actually, the origin of this concept came back to Richard Brualdi's problems that are proposed in cite{braldi}: Let $G_n$ and $G'_n$ be two nonisomorphic simple graphs on $n$ vertices with spectra$$lambda_1 geq lambda_2 geq cdots geq lambda_n ;;;text{and};;; lambda'_1 geq lambda'_2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001